MIT CONCRETE SUSTAINABILITY HUB

CSHub

Albedo, Climate, & Urban Heat Islands

Jeremy Gregory and CSHub research team: Xin Xu, Liyi Xu, Adam Schlosser, & Randolph Kirchain

CSHub Webinar February 15, 2018 (Slides revised February 21, 2018)

Albedo: fraction of solar radiation reflected from a surface

Climate is affected by albedo

Three main factors affecting the climate of a planet:

Slide 3

Source: Grid Arendal, http://www.grida.no/resources/7033

Urban heat islands are affected by albedo

Urban surface albedo is significant

In many urban areas, pavements and roofs constitute over 60% of urban surfaces

	33%	22%	36%	9%
	20%	20%	45%	15%
	27%	25%	37%	11%
	37%	21%	29%	12%
Source: Rose et al. (2003)	<u>20</u>	/ %~25%	/ <u>30%~45%</u>	

Global change of urban surface albedo could reduce radiative forcing equivalent to **44 Gt of CO2** with **\$1 billion** in energy savings per year in US (Akbari et al. 2009)

Cool pavements are a potential mitigation mechanism for climate change and UHI

heatisland.lbl.gov

https://www.nytimes.com/2017/07/us/california-today-cool-pavements-la.html

Evaluating the impacts of pavement albedo is complicated

Contexts vary significantly

Location

Urban morphology

Climate

Building properties

Electricity grid

Key research questions

- 1. Are there climate feedback effects due to changes in pavement albedo?
- 2. How does context affect the impacts of pavement albedo?
 - a) Is radiative forcing or building energy demand more significant?
- 3. How does global warming potential due to albedo compare with other pavement life cycle GWP?
 - a) Which climate change and UHI mitigation strategies are the most promising?

Research questions and approach

Weather Research & Forecasting (WRF) Model

Model regional climate using large scale simulations to identify possible feedback

Global Climate Model

Regional Climate Model

WRF Land Cover Map

Analyze regional climate effects of increasing *urban* albedo from 0.2 (control) to 0.4 over *10 years*

Year-to-year results are highly variable

Urban areas cooler on average due to albedo change

Once we consider at least 5 years of temperature data

Are there climate feedback effects due to changes in pavement albedo?

No – based on multiple years of climate simulations

Urban areas cooler on average

Research questions and approach

Albedo Impacts Radiative Balance & Urban Energy Demand

Approach: calculate NET effects of RF & BED

Radiative forcing

- Develop analytical model accounting for
 - Solar radiation intensity
 - Solar zenith angle
 - Cloudiness
- Case study of 14
 representative locations
- Nationwide analysis

Building energy demand

- Parametric analysis on
 impact of urban morphology
- Develop context-specific
 BED model
 - Microclimate
 - Urban morphology
- Case study of Boston using GIS data

Quantifying location-specific impacts of pavement albedo on radiative forcing using an analytical approach

- Model-based parameterization considering solar intensity, cloud transmittance and solar angle
- Location-specific data from climate simulations
- Incorporating urban transmittance to account for shading effect in urban areas
- Change of pavement albedo decay linearly over time

Explore climate change mitigation potential of pavement albedo via radiative forcing

14 cities chosen representative of 7 different climate zones

Climate zone 1 – Very hot-humid – Miami FL Climate zone 2A – Hot-humid – Houston, TX Climate zone 2B – Hot-dry – Phoenix, AZ Climate zone 3A – Warm-humid – Atlanta, GA Climate zone 3B – Warm-dry – Los Angeles, CA Climate zone 3C – Warm-marine – San Francisco, CA Climate zone 4A – Mixed-humid – Baltimore, MD Climate zone 4A – Mixed-humid – Nashville, TN Climate zone 4A – Mixed-humid – St. Louis, MO Climate zone 4A – Mixed-humid – St. Louis, MO Climate zone 4C – Mixed-marine – Seattle, WA Climate zone 5A – Cool-humid – Boston, MA Climate zone 5B – Cool-dry – Denver, CO Climate zone 6 – Cold-humid – Minneapolis, MN Climate zone 7 – Very cold – Duluth, MN

Location-specific RF estimate of higher-albedo pavements

GWP savings from RF due to 0.01 increase in pavement albedo for the selected 14 locations over 50 years

Nationwide analysis of pavement albedo impact on RF

Approach: calculate NET effects of RF & BED

Radiative forcing

- Develop analytical model accounting for
 - Solar radiation intensity
 - Solar zenith angle
 - Cloudiness
- Case study of 14
 representative locations
- Nationwide analysis

Building energy demand

- Parametric analysis on
 impact of urban morphology
- Develop context-specific
 BED model
 - Microclimate
 - Urban morphology
- Case study of Boston using GIS data

Building energy modeling at urban scale

Categorizing urban neighborhoods using local climate zones

Bulletin of the American Meteorological Society 93(12): 1879–1900.

Integrated tools for quantifying context-specific BED at neighborhood scale

Urban geometry generation for parametric analysis

MIT CSHub

Realistic neighborhoods in Boston using GIS data

Data sources: City of Boston and State of Massachusetts Data processed and visualized with *QGIS* and *Tableau*

Boston

- 177 census tracts
- 129,370 buildings
- 20,224 road sections

Parameter to extract:

- Avg. building height
- Avg. building length
- Canyon aspect ratio
- Building density

Results for Boston: Local Climate Zones

Boston Local Climate Zones LCZ lide 29

GWP savings from BED due to 0.2 increase in pavement albedo for 50 years

Total GWP savings from BED due to 0.2 increase in pavement albedo for 50 years

Net GWP savings from BED and RF due to 0.2 increase in pavement albedo for 50 years

GIS data enables highly localized analyses

GIS data enables highly localized analyses

GIS data enables highly localized analyses

How does context affect the impacts of pavement albedo?

For Boston location and climate:

- Dense, urban neighborhoods:
 - BED larger than RF due to shading
 - GWP is a net burden
- Most other neighborhoods:
 - RF larger than BED
 - GWP is a net savings

Next: evaluate other locations and climates and impacts of aggregation

Research questions and approach

Sustainable pavement design decisions

- Pavement life cycle: Should one use materials with recycled content, or increase surface albedos?
- What are life cycle environmental impacts of cool pavements?

Pavement life cycle assessment model

Pavement scenarios for Boston LCZ9 Census Tract

Key question: is climate change and/or UHI mitigation explicitly part of pavement design goal?

New construction	Rehabilitation	Aged Albedo
PCC	Full depth repair	0.25
High albedo PCC	Full depth repair	0.5
AC	Mill & fill AC overlay	0.1
AC + coating	Mill & fill AC overlay + reflective coating	0.25
AC + high albedo coating	Mill & fill AC overlay + high albedo reflective coating	0.5

Pavement designs and maintenance scenarios created by a pavement engineer for urban traffic loads Aged albedo values from UCPRC and LBNL, except *AC*+ *high albedo coating*

Pavement life cycle GWP breakdown for Boston LCZ9

Albedo impacts relative to baseline of average earth albedo (0.3) M&R=maintenance & rehabilitation; EFC= excess fuel consumption; Defl=deflection; Rough=roughness; Carb&Light= carbonation & lighting; EoL= end-of-life

How does global warming potential due to albedo compare with other pavement life cycle GWP?

Preliminary results:

- Comparison of scenarios depends on goal: include climate change and/or UHI mitigation?
- Albedo can be significant portion of pavement life cycle GWP

Next:

- Evaluate relative impacts of albedo for range of scenarios: location, climate, LCZs, materials, M&R, albedos
- Analyze impacts of uncertainty

Research questions and approach

Overall Conclusions

- Increasing pavement albedo has significant potential to mitigate impacts of climate change and UHI effects
- Climate simulation models should be run for several years
- Significant opportunity for RF benefits at the national level
- BED impacts depend on urban morphology and favor less dense neighborhoods
- RF is more significant in most neighborhoods
- Albedo can be a significant portion of pavement life cycle environmental impacts, but is context sensitive

